DRAINAGE DESIGN STANDARDS

The Town of

Public Works & Engineering Services

16801 Westgrove Road Addison, TX 75001

March 2022

TABLE OF CONTENTS

INTRODUCTION

Objectives and Purpose	4
Manual Development	4
Warning and Disclaimer of Liability	4

GENERAL POLICY

Drainage	5
Platting/Dedication of Easements for Drainage Facilities	6
Drainage Facility Easements	7
Development in Floodplains	8

DRAINAGE DESIGN STANDARDS

Design Storm Frequency	9
Runoff Calculations	10
Rational Method	10
Unit Hydrograph Methods	12
3.2.1.1 Time of Concentration	11
Street and Alley Capacities	12
Valley Gutters.	13
Flow in Gutters and Inlet Locations	13
Inlet Sizing	14
Hydraulic Design of Closed Conduits	15
Open Channels	18
Roadside Ditches	20
Culverts	20
Bridges	22
Energy Dissipation	22
Detention Facilities	23

STORM WATER QUALITY DESIGN STANDARDS

Land Development Post-Construction Runoff Controls	25
Temporary Construction Site Storm Water Pollution Prevention	26

REGULATORY ISSUES

U.S. Army Corps of Engineers 404 Permits	27
National Flood Insurance Program	28
VARIANCE FROM STANDARDS	28

LIST OF TABLESTable 1 — Runoff Coefficients and Minimum Inlet Times......11Table 2 — Manning's Roughness Coefficients "n" for Storm Drains......16Table 4 — Roughness Coefficients and Maximum Velocities for Open Channels...19

APPENDICES

APPENDIX A - Standard Easement Dedication Statement	29
APPENDIX B - Modified Rational Method Detention Basin Design Example	30
APPENDIX C – Figures	33

LIST OF FIGURES

Figure 1 - Major Drainage Basins	34
Figure 2 - Rainfall Intensity-Duration-Frequency Curves	35
Figure 3 - Overland Time of Flow	36
Figure 4 - Shallow Concentrated Flow Velocity	37
Figure 5 - Capacity of Triangular Gutters	38
Figure 6 - Full Gutter Capacity for Parabolic Crowns	39
Figure 7 - Capacity of Alley Sections	40
Figure 8 - Capacity of Curb Inlets on Grade	41
Figure 9 - Capacity of Drop Inlets and Curb Inlets in Sumps	42
Figure 10 - Manning's Formula for Flow in Storm drains	43
Figure 11 - Minor Head Losses (2 pages)	44-45
Figure 12 - Hydraulic Computation Tables	46
Figure 13 - Headwater Depth for Pipe Culverts with Inlet Control	47
Figure 14 - Headwater Depth for Pipe Culverts Flowing Full with Outlet Control	48
Figure 15 - Culvert Design Table	49
Figure 16 - TCEQ Construction Permit Flow Chart	50

THIS DOCUMENT PROVIDES GUIDANCE to developers, engineers, and contractors desiring to install additions to the Town of Addison drainage systems. The criteria laid out herein are the set minimum standards, more stringent criteria may be required at the direction of the Public Works & Engineering Services.

I. INTRODUCTION

A. Objectives and Purpose

1. The Town of Addison is dedicated to the protection of local water resources. Land development and redevelopment projects with associated increases in impervious cover can increase storm water runoff rates and volumes, negatively affecting the water quality of receiving water bodies. This Manual establishes criteria, procedures and data for drainage evaluation to ensure the adequacy of new drainage facilities. This Manual also establishes post-construction runoff control objectives for new development and redevelopment projects to protect water quality and mitigate potential negative impacts caused by development.

2. The use of this Manual will provide a consistent approach to analyzing drainage and designing drainage improvements and structural controls within the Town of Addison. Because many engineering methods for analyzing drainage exist, these criteria for analyzing drainage are established to provide continuity of drainage design throughout the Town.

B. Manual Development

1. This Manual has been developed using the following guiding criteria and assumptions:

a) The user of this Manual is expected to be a registered professional civil engineer who is skilled in the appropriate disciplines necessary to evaluate drainage problems. Therefore, the terms used, and the methods discussed in the Manual should be familiar to the user.

b) The criteria set forth in this Manual are the minimum requirements. More stringent criteria may be required if the Director of Public Works & Engineering Services determines it is necessary and in the interest of the Town. Such determination will be made on a case-by-case basis.

c) This Manual does not contain the solution for drainage problems. It establishes criteria and procedures to be used in designing drainage facilities in the Town of Addison.

d) This Manual is not intended to limit creativity in developing solutions for drainage problems. Evaluation of the applicability of innovative solutions and new products is encouraged. The intent of this Manual is to provide continuity while encouraging use of accepted procedures and the most current data and technology.

2. This Manual recommends procedures but does not present the theory on which the procedures are based. The user should be familiar with the published sources that set forth this information.

3. Design aids published elsewhere and commonly available may be referenced but are not reproduced in this Manual.

C. Warning and Disclaimer of Liability

1. The degree of flood protection established in this Manual is considered economically reasonable and is based on scientific and engineering considerations. However, runoff amounts that exceed what is predicted by the design storm can occur, and flood heights greater than the design height can occur. This Manual does not imply that land outside rights-of-way or easements will be free from flooding or flood damages.

2. The criteria set forth in this Manual shall not create liability on the part of the TOA Drainage Design Standards | Rev 03/2022 4

Town of Addison, Texas, or any official, employee or consultant thereof, for any flood damages that result from reliance on this Manual or on any administrative decision lawfully made.

3. The design engineer bears total responsibility for the adequacy of the design. Approval of plans or calculations by the Town or their designee does not relieve the engineer of this responsibility.

II. GENERAL POLICY

A. Drainage

1. The Town of Addison's most current Stormwater Master Drainage Study evaluates the degree of flooding that may occur during a major storm event for the Town's eight (8) major drainage basins. The Master Drainage Study should be reviewed by developers and engineers to determine flood prone areas and recommended drainage improvements. Land developments will be required to incorporate the recommendations of the Town's Stormwater Master Drainage Study. The map on Figure 1 in Appendix C delineates the limits of the Town of Addison's major drainage basins as follows:

- a) Hall Branch Basin
- b) Hutton Branch Creek Basin
- c) Keller Springs Branch Basin
- d) Rawhide Creek Basin
- e) Addison Circle Basin
- f) Farmers Branch Creek Basin
- g) South Addison Basin
- h) White Rock Creek Basin

2. A preliminary planning conference should be initiated by the owner's or developer's engineer with the Director of Public Works & Engineering Services prior to the submittal of any development or redevelopment plan to determine their responsibility for the design of drainage improvements and any required permitting.

3. The owner or developer of the property to be developed shall be responsible for the design and construction of all storm drainage facilities on and through the subject property. This responsibility includes all existing and proposed on-site drainage, the drainage directed to that property by prior development, and upstream, offsite drainage areas. The general storm drainage design policy for conveyance of upstream, offsite drainage areas for private land development projects and for public or capital improvement projects shall be as follows:

a) Private Land Developments: Drainage systems shall be designed to convey existing flows from upstream offsite drainage areas.

b) Public or Capital Improvement Projects: Drainage systems shall be designed to convey future, fully developed flows from upstream offsite drainage areas.

4. Provisions shall be made to allow for connection to the on-site storm drainage system from upstream, off-site drainage areas.

5. No increase or concentration of storm water may be conveyed off-site without easements and/or downstream drainage improvements. Increased storm water runoff attributable to new development shall not exceed the capacity of the

downstream drainage system in accordance with the Ten Percent Rule, as defined below. If no downstream drainage system exists, increased storm water runoff shall not adversely affect adjoining property.

a) Ten Percent Rule: Where proposed improvements will result in increased storm water discharge offsite, a downstream assessment will be required. The minimum downstream distance for assessment is defined by the point where the proposed project area constitutes no more than ten percent (10%) of the overall contributing watershed to that point.

b) Example 1: A 10-acre development proposes to increase discharge offsite by 30 cfs. A downstream assessment reveals that the existing drainage system has sufficient capacity to the discharge point into a creek that drains 150 acres (10 + 150 = 6%). No detention is required.

c) Example 2: A 1 acre development proposes to increase discharge offsite by 8 cfs, into an earthen swale. A downstream assessment reveals that the swale has capacity but only drains 7 acres (1 + 7 = 14%). Further downstream the receiving drop inlet drains 10 acres (10% rule) but does not meet current design criteria. Detention will be required.

6. In cases where the proposed runoff would exceed the capacity of downstream facilities, the developer will be required to either provide detention or downstream improvements and provide a drainage easement to the Town where required. Multiphase developments will be considered as a single entity in determining the requirement for detention. If not constructed as a whole, detention adequate for each stage of development must be constructed before or with that stage and remain in operation during each subsequent stage of development.

7. In all new developments where storm water runoff has been collected or concentrated, discharge shall be conveyed off-site by creeks, channels, or storm drainage systems. Easements shall be provided by the developer to the Town for all on-site and off-site drainage facilities. All flows shall be discharged in a non-erosive manner and shall meet the established regulations governing storm water quality as described in Section 4.1, Land Development Post-Construction Runoff Controls.

8. The developer shall pay for the cost of all drainage improvements required, including any necessary off-site channels or storm drainage and acquisition of the required easements.

9. The post-construction storm water protection policies provided within this manual establish baseline criteria for the minimization of impacts to water quality.

a) The owner or developer is responsible for mitigating water quality impacts from the development or redevelopment project.

b) Refer to most current version of Stormwater Fee Reduction incentives for water quality - bioswales, rain gardens, etc.

c) Any proposed improvements must be within dedicated detention area easements & maintained by the property owner.

B. Platting/Dedication of Easements for Drainage Facilities

1. Property developments containing drainage structures, detention facilities, floodways, open channels, creeks and streams shall be platted with Drainage Easements. The plat shall identify the maintenance responsibilities for the drainage facilities (private or public) within the development. All development plats with detention easements shall include the detention area easement statement provided

in the Appendix A.

2. Placement of any fill or property development is prohibited in the 100-year floodplain (whether so designated by FEMA or as determined locally) except as allowed in accordance with FEMA regulations and the Town of Addison ordinances. 3. Easements for drainage facilities shall be designated as follows:

Drainage Easements: Drainage Easements shall be used for a) floodplains, natural drainage ways, improved open channels, man-made storm drain systems and drainage structures, including certain postconstruction storm water runoff controls. Individual property owners are responsible for all necessary maintenance of the easement within their property

Detention Area Easements: Detention basins shall be maintained in b) Detention Area Easements. Detention area easements shall be maintained by the landowner(s) or neighborhood association. The detention area easement statement provided in Appendix A shall be placed on all plats.

- 4. Drainage easement sizing:
 - Widths for storm drainpipe easements shall be as follows: Storm Drain Diameter I.D.) Min. Easement Width* ≤48" Pipe 20' Outside Diameter + 15' > 48" Pipe & <u>All RCB</u>
 - a)

*Storm drains deeper than ten (10) feet as measured from flowline to ground surface shall include an additional two (2) feet of easement width for each foot of depth greater than ten (10) feet.

(7.5' on either side, rounded up)

b) Drainage easement widths for natural drainage ways and improved open channels shall be a minimum of fifteen (15) feet wider than the top of the channel with a minimum of ten (10) feet being on one side to serve as access along the channel for maintenance purposes. Where steep natural channel banks are to remain, the easement shall be based on a predicted top of channel depicted by a 3:1 projected slope from the flowline to the natural ground, plus ten (10) feet to one side. Maintenance access ramps shall be provided on improved channels at logical locations and contained within the easement.

c) Drainage easements shall extend a minimum of twenty-five (25) feet downstream of the outfall headwall or to the end of the energy dissipation structure if applicable (i.e., rock riprap, gabions, etc.), whichever is greater. Drainage easements shall be provided where grading is required to establish positive slope from storm drainage system discharges to natural grade.

Drainage easements shall be dedicated to encompassing the limits of d) the 100-year, fully developed floodplain.

5. Drainage Facility Easements:

The owner or developer shall provide all necessary drainage facility a) easements dedicated to the Town as defined above and as required for drainage structures, including storm drains, channels and streams. Easements shall be required in all upstream and downstream off-site locations where construction of drainage improvements is proposed or required. All easements shall be identified on the Final Plat.

Any required offsite drainage easements shall be obtained, and a filed b)

copy provided to the Town of Addison prior to the approval of the development plans. The offsite drainage easements shall be included in the record drawings submittal and identified on the Final Plat, prior to acceptance of the development.

c) Drainage easements are required to allow access to Town of Addison personnel for maintenance and repairs, and to prevent property owners from making modifications that would compromise the function of the storm drainage system. However, individual property owners are responsible for all necessary maintenance of the easement and drainage facilities within their property.

C. Development in Floodplains

1. It is the policy of the Town of Addison to regulate development and fill in the 100-year floodplain areas as designated by FEMA Flood Insurance Rate Maps and/or the current Storm Drainage Master Study, whichever is more restrictive.

a) Development or fill within a floodplain will require engineering analysis that shows the development or fill causes no rise in the 100-year water surface elevation upstream or downstream, except as allowed by current FEMA and Town of Addison regulations.

b) A Floodplain Development Permit shall be obtained prior to beginning any construction activities within a designated floodplain. Refer to the Town of Addison's Floodplain Ordinance for further information.

2. Valley storage consists of the volume of water that can be contained by a creek during periods of flooding. The amount of valley storage affects the peak discharge in the creek as the flood wave moves downstream.

a) Loss of valley storage due to an encroachment shall be offset by excavating an equal volume from the floodplain area at equivalent elevations, resulting in a net balance of valley storage.

b) Velocities at strategic points throughout the channel (as approved by the Public Works & Engineering Services) shall be analyzed for 25 and 100year storm events to ensure that any new fill and grading is protected

III. DRAINAGE DESIGN STANDARDS

A. Design Storm Frequency

1. All drainage facilities shall be designed based on runoff from a 100-year (1% annual chance) storm event, and assuming the entire contributing drainage area is fully developed. The Town of Addison Zoning Map shall be used to identify the anticipated makeup of full development.

2. All open and closed drainage systems shall be designed to provide positive overflow and protection of all public and private property during a storm event having a 100-year (1% annual chance) storm event, regardless of the design storm frequency of a particular drainage facility.

3. The design of storm drainage facilities shall include sufficient calculations and analysis, as deemed necessary by the Director of Public Works & Engineering Services, to prove the facility can convey the runoff from the following design storm frequencies.

DRAINAGE FACILITY	DESIGN STORM FREQUENCY
Closed Storm drain System	100-year within storm system, with
Ciosed Storm drain System	positive overflow at low point or sag
Street	100-year below top of curb *
Roadside Ditch	100-year below pavement edge
Culvert	100-year within culvert with 1 foot
	freeboard to pavement edge or gutter
Pridao	100-year with 2-foot freeboard to bridge
bridge	low-chord
Channel	100-year with 1 foot freeboard to top of
	bank

*A closed storm drain system shall be designed to pick up flow from a street when the runoff from a ten (10) year frequency storm exceeds the capacity of the street to the top of curb; **or** the spread of water on a collector street does not leave one (1) traffic lane open to safely convey traffic; or the spread of water on an arterial street does not leave at least two (2) traffic lanes open to safely convey traffic, whichever is more restrictive. Residential streets and parking lots shall not direct flow into a collector or larger street in excess of the capacity stated above.

B. Drainage Areas

1. The size and shape of the watershed and sub-areas shall be determined for each design point through the use of planimetric-topographic maps and supplemented by field surveys in areas where topographic data has changed or where the contour interval is insufficient to adequately determine the direction of flow. Offsite drainage areas shall be delineated using a minimum of 2-foot topographic contours. NCTCOG topography is recommended for any offsite drainage area delineations unless more current data is available. Drainage area maps shall identify the source of offsite topography. Drainage areas within a development area will be delineated based on field-surveyed topography. The outline of the drainage area contributing to the system being designed and an outline of the sub-drainage area map. Pre- and post-development (existing and proposed) drainage area maps shall be submitted to the Director of Public Works & Engineering Services for review and approval. All contributing areas shall be included in the drainage area maps, not only the areas within the property boundary.

2. Drainage areas shall conform to the natural topography of the watershed contributing to the proposed storm drainage facilities.

No diversion of drainage from one watershed to another shall be permitted without the written approval of the Director of Public Works & Engineering Services. In all cases, post-development drainage discharge shall occur in the same location as in the pre-development. Where discharge toward off-site adjacent property is relocated, such relocation shall be acknowledged in writing by the downstream property owner and any other property owner who may be affected.

C. Runoff Calculations

1. Refer to Figure 12 in Appendix C for the standard format for presentation of drainage area, inlet and storm drain computations.

2. Design flow of storm water runoff is to be calculated using the Rational Method for storm drainage systems serving a watershed area less than one hundred (100) acres. This method will primarily be used for the design of storm drainage systems and small channels. A unit hydrograph method shall be used to determine runoff from watershed areas larger than one hundred (100) acres and for more complex applications where the Director of Public Works & Engineering Services deems the Rational Method is not appropriate

3. Rational Method: Q = C * i * A

Where:

- Q = the storm flow at a given point in cubic feet per second (cfs)
- C = a coefficient of runoff representing the ratio of rainfall to peak runoff.
- i = rainfall intensity in inches per hour for a period equal to the time of flow from the uppermost point of the drainage area to the point under consideration. Refer to Figure 2 in Appendix C for the Town of Addison rainfall intensity curves.
- A = the Drainage area contributing to the point of design, in acres.

a) Runoff coefficients for the Town of Addison are shown in Table 1. These coefficients shall be the minimum used and shall be based on full development. Smaller coefficients may be used if approved by the Director of Public Works & Engineering Services in writing. For small drainage areas, roadways, land uses other than those listed in Table 1, and miscellaneous land uses like parks, schools, planned developments, etc., where the designated runoff coefficient is not representative, a composite runoff coefficient shall be calculated using the appropriate factor for undeveloped land given in the table and 1.00 for impervious areas.

TABLE 1			
RUNOFF COEFFICIENTS & MUIMUM INLET TIMES			
Zoning District Name ¹	Runoff Coefficient "C"	Minimum Inlet Time ² (minutes)	
Undeveloped Land/Open Space			
0% - 3% Slope	0.25		
3% - 5% Slope	0.30		
Greater than 5% Slope	0.35		
Single Family Residential	0.60	10	
Multi-Family Residential	0.90	10	
Commercial	0.90	10	
Industrial	0.90	10	
Roadway Rights-of-way	0.90	10	
Water Body	1.00		

For any land use not listed, the runoff coefficient shall be calculated based on a weighted percentage of pervious (C=given above) and impervious (C=1.00) surface. ² Inlet time may vary from Time of Concentration. See Section 3.2.1.1 for more information. Inlet time should be confirmed prior to using the minimum value.

b) Time of Concentration: the longest time, without unreasonable delay, that will be required for a drop of water to flow from the upper limit of a drainage area to the design point under consideration. The time of concentration to any point in a storm drainage system is a combination of the inlet time and the time of flow in the storm drain system.

(1) The inlet time is the time for water to flow overland to the first storm drain inlet in the proposed drainage system. The time attributable to overland flow may be calculated using the graphical method shown on Figure 3 in Appendix C. The maximum length allowed for overland flow shall not be more than 100 feet.

(2) Shallow concentrated flow can occur on unpaved areas such as yards, parks, and open space, or on paved areas such as parking lots and street gutters. These three cases are represented on Figure 4 in Appendix C which can be used to determine the average flow velocity. This velocity can then be multiplied by the length of the flow path to determine the flow time. The maximum allowable length of shallow concentrated flow is one thousand (1,000) feet. Beyond this distance, the velocity of flow should be calculated for the specific pipe or channel that conveys the flow.

(3) For purposes of calculating inlet capacity, inlet times may be calculated as described above, but in no case shall the inlet time used to be less than the time shown in Table 1. Except in unusual cases, the inlet times shown in Table 1 should be used, as they will be shorter than the inlet time calculated as described above.

c) When calculating the quantity of storm water runoff, rainfall intensity

will be determined from the rainfall intensity data provided on Figure 2 in Appendix C.

4. Unit Hydrograph Methods

a) Runoff from drainage areas larger than one hundred (100) acres will be determined using a Unit Hydrograph method. Various analysis methods can be implemented using computer software including the U.S. Army Corps of Engineers' HEC-HMS computer program, XPSWMM, or InfoWorks. Other software programs may be used with prior approval by the Director of Public Works & Engineering Services.

b) A 24-hour rainfall duration should be appropriate for most applications. An alternate duration may be utilized with written approval by the Director of Public Works & Engineering Services. The duration shall be large enough to capture all excess rainfall as well as provide reasonable runoff volumes when performing storage analyses. Computation intervals should be tested for sensitivity to the hydrograph peak and shall not be greater than 15 minutes.

c) The effects of urbanization should be reflected in the precipitation loss rates. The Natural Resources Conservation Service (NCRS) curve number method may be used in this way. Suitable curve numbers for various urban land uses have been published by the NCRS in TR-55, Urban Hydrology for Small Watersheds.

d) Routing, when appropriate, shall use the Modified Puts methodology. Reach lengths shorter than the computation interval should not incorporate routing.

IV. STREETS & ALLEYS

A. Street and alley capacities shall be calculated as open channels using the continuity equation and Manning's equation.

$$Q = V * A$$
 $V = \frac{1.486 * R^{2/3} * S^{1/2}}{n}$ $Q = \frac{1.486 * A * R^{2/3} * S^{1/2}}{n}$ $R = \frac{A}{P}$

Where:

Q = flow (cfs)

A = cross sectional area of conduit or channel (sq ft)

- V = Average velocity of flow in conduit (fps)
- n = Manning's roughness coefficient of the conduit or channel (see Table 2)
- R = hydraulic radius (area of flow divided by wetted perimeter) (ft)
- S = friction slope (ft/ft)
- P = wetted perimeter (ft)

1. Figure 5 provides a graphical solution for the capacity of triangular gutters, while Figure 6 may be used to determine the capacity of a gutter in a street with a

parabolic crown. Figure 5 and 6 are located in Appendix C. Streets and alleys shall contain runoff from the 100-year storm within the rights-of-way or dedicated easement, or where no curbs exist, within the roadside ditches. Grate inlets or combination curb and grate inlets shall be placed at those locations where the alley rights-of-way capacity is exceeded by runoff from the 100-year storm.

2. 100-year discharge from alleys and driveways into streets shall not exceed four (4) cfs or the available street capacity at the next downstream inlet, whichever is less.

3. Special attention is required at turns and intersections of alleys to determine whether superelevation or curbs are necessary to contain the required flow. Superelevation calculations will be required at all turns and bends in alleys where the velocity in the alley exceeds 3 feet per second. The minimum radius for the invert at alley turns (at bends, intersections or tees) will be thirty-five feet (35'). Figure 7 in Appendix C may be used for determination of alley capacity and velocity. Superelevation shall be calculated using the following formula:

$$\Delta y = \frac{V^2 * W}{g * r}$$

Where:

 Δy = rise in water surface from the centerline to outside edge of curve (ft)

V = mean velocity (fps)

W = alley width (ft)

g = acceleration due to gravity (32.2 ft/sec2)

r = radius of centerline curve (ft)

4. Alley turns and intersections shall be graded to provide no less than 0.2' of freeboard above superelevation as calculated above. Note that curbs may be necessary at the outside of some turns in order to direct water around the turn. In such cases, no driveways will be permitted where such curbs are required.

B. Valley Gutters

1. The use of valley gutters to convey storm water across a street intersection is subject to the following criteria:

a) A major street (thoroughfare) shall not be crossed with a valley gutter.

b) A collector street shall not be crossed with a valley gutter unless approved in writing by the Director of Public Works & Engineering Services.

C. Flow in Gutters and Inlet Locations

1. Inlets are to be located as necessary to maintain depth of flow below the top of curb and to maintain the required number of lanes open to safely convey traffic (previously specified above). If, in the judgment by the Director of Public Works & Engineering Services, the flow in the gutter would be excessive under these conditions, the storm drain shall be extended to a point where the gutter flow can be intercepted farther upstream. Multiple inlets at a single location are permitted to a maximum of twenty (20) feet. Inlets should be placed upstream of intersections to prevent large amounts of water from running through the intersections.

2. Inlets should also be located on the lower traffic volume street at a street intersection and in alleys at the street intersection as necessary to prevent water from entering higher volume streets. In the case of parking lots, inlets shall intercept water before it enters the street gutter, subject to the limitations of Section 3.3. Inlets shall be placed at intersections such that the beginning of the inlet transition does not fall within the curb return radius or the lay down curb for barrier free ramps.

3. Recessed curb inlets shall be used on all thoroughfares. Recessed brick top curb inlets (per the Town's standard detail) should be used within the Urban Center District. Standard (non-recessed) curb inlets shall be used on collectors, residential streets and alleys.

4. Where water is conveyed from a street directly into an open channel, it shall be conveyed through an approved type of curb inlet or flume, and not through a curb cut.

5. Curb inlets and drop inlets can be used to collect runoff. Selection of the type of inlet depends on the location and conditions and is subject to approval by the Director of Public Works & Engineering Services.

6. Combination inlets (curb and grate) may be used in alleys but may not be used in streets. The flowline of the alley shall transition to direct flow into the inlet. Combination inlets shall be provided at all alley low points.

7. Positive overflow shall be provided at all low points. Positive overflow refers to a means for safely conveying excess flow overland when underground storm drainage systems do not function properly or when their capacity is exceeded. Such overflow shall be in a public rights-of-way or dedicated easement. Calculations will be required to demonstrate the capacity of the overflow route. Minimum finish floor elevations adjacent to such overflows shall be no less than 12' above the overland flow water surface elevation.

D. Inlet Sizing & Capacity

1. Under normal conditions, the minimum curb inlet size shall be four (4) feet. Standard inlet sizes will be in increments of two (2) feet to a maximum of twenty (20) feet agrees with storm drain details. The minimum criteria for the sizing and placement of on-grade inlets and sump inlets are provided below. In all cases, inlet calculations shall be provided by the design engineer to verify the inlet sizing is adequate to meet the design intent.

2. The capacity of a depressed curb inlet on-grade will be based on the following equation:

$$Q_1 = \frac{0.7 * \left(H_1^{5/2} - a^{5/2}\right)}{y_o}$$

where:

 Q_1 = discharge into inlet per foot of inlet opening (cfs/ft)

 H_1 = total depth of flow at inlet throat (a + y_o)

A = gutter depression (ft)

 $y_o =$ depth of flow in approach gutter (ft)

3. Figure 8 in Appendix C may also be used to determine on-grade inlet capacity.

4. The capacity of low point or drop inlets will be determined based on the broad-crested weir formula where the depth of flow does not exceed the height of the inlet opening. The weir equation is as follows:

$$Q_1 = 3.0 * H_1^{3/2}$$

5. Figure 9 in Appendix C may also be used to determine capacity of sump inlets based on the weir and orifice formulas. The orifice equation should be used to determine the capacity of an inlet where the depth exceeds the inlet opening height. The orifice equation used for curb inlet design is as follows:

$$Q_1 = 4.82 * H_1^{1/2} * A_L$$

where:

 A_L = area for 1 ft length of opening (s_f)

6. Because of the tendency for clogging, combination inlets at alley low points shall be designed as curb inlets, neglecting any grate inlet capacity (100% clogging). Combination inlets on-grade shall be calculated using a clogging factor of 50%. Capacity of grate inlets on grade is a function of the number, size and orientation of the grate openings, in addition to the depth of flow in the gutter. Calculation of the capacity of combination inlets shall be based on these factors and may be as provided by grate inlet manufacturers. Suitable grate inlet design calculations and efficiency data for Various sizes and shapes of grates have been published by the FHWA in HEC-12, Drainage of Highway Pavements.

V. CLOSED CONDUIT SYSTEMS

A. Hydraulic Design

1. After completing the computations of the quantity of storm runoff entering each inlet, the size and gradient of pipe required to carry the design storm are to be determined. All hydraulic gradient calculations are required to begin at the outfall of the system. Computer software can be used to aid in the design process; however, hydraulic gradient calculations shall be provided for review in the standard table format provided on Figure 12 located under Appendix C. The following shall apply for establishing the starting elevation of the hydraulic gradient:

2. The 100-year water surface elevation of the receiving creek, stream, or other open channel shall be used as the starting elevation (tailwater) for the hydraulic gradient in most cases.

3. When a storm drain system is connected to a larger creek or stream and the drainage area of the stream is substantially larger than the system area, the coincident storm frequencies shall be evaluated. The design engineer shall refer to the Frequencies of Coincidental Occurrence tables per the Texas Department of Transportation Hydraulic Design Manual for analysis of the coincident design storms. In such cases, the largest structure required to satisfy both frequency combinations shall be provided.

4. When a proposed storm drain is connected to an existing storm drain system, the hydraulic gradient for the proposed storm drain should start at the elevation of the existing storm drains hydraulic gradient.

5. When a proposed storm drain system is in full flow, the starting HGL shall begin at the inside top of pipe.

6. All closed conduits shall be hydraulically designed for full flow through the use of the continuity equation and Manning's equation (below or from Figure 10 in Appendix C):

$$Q = V * A$$
 $V = \frac{1.486* R^{2/3} * S^{1/2}}{n}$ $Q = \frac{1.486* A * R^{2/3} * S^{1/2}}{n}$ $R = \frac{A}{P}$

Where:

Q = flow (cfs)

A = cross sectional area of conduit or channel (sq ft)

V = Average velocity of flow in conduit (fps)

n = Manning's roughness coefficient of the conduit or channel (see Table 2)

R = hydraulic radius (area of flow divided by wetted perimeter) (ft)

S = friction slope (ft/ft)

p = wetted perimeter (ft)

TABLE 2			
MANNING'S ROUGHNESS COEFFICIENTS "n" FOR STORM DRAINS			
Materials of Construction	Manning's Coefficient "n"		
Monolithic Concrete Structure	0.015		
Concrete Pipe			
Good alignment, smooth joints	0.013		
Fair alignment, ordinary joints	0.015		
Poor alignment, poor joints	0.017		
High Density Polyethylene (HDPE) / Pol	ypropylene (PP)		
Smooth inner walls	0.012		
Corrugated inner walls	0.024		

7. The hydraulic grade line (HGL) shall be designed to be at least one (1) foot below the top of curb elevation. Once the HGL is set, the depth and slope of the pipe may be determined. The pipe shall be located so that the inside top of the pipe is at or below the HGL and at or above the minimum velocity. In some situations, generally at the upstream end of a pipe system, the inside top of the pipe may be above the HGL, which results in partial flow. In such cases, the pipe capacity and velocity shall be calculated at normal depth, neglecting minor losses. The HGL shall be shown in the profile on the plans for all storm drain lines, including inlet leads, except where in partial flow. In all cases the HGL elevation, including entrance headloss, shall be below the designed inlet throat elevation.

8. The minimum slope of a pipe or box section should be capable of producing a velocity of at least 2.5 feet per second when flowing full. Maximum velocity in a trunk line shall be 20 fps. Inlet laterals do not have a max velocity.

9. From the time storm water first enters the storm drainage system at the upstream inlet until it discharges at the outlet, it will encounter a variety of structures such as inlets, manholes, junctions, bends, and enlargements that will cause minor head losses. In general, these minor losses can be expressed as a function of velocity head. Figure 11 in Appendix C shows the various cases and the method of computing the associated minor head loss.

B. Closed Conduit System Design Geometry

1. The minimum public (in ROW or drainage easement) storm drain conduit diameter shall be 18-inches. Pipe sizes shall not decrease in the downstream direction unless otherwise approved in writing by the Director of Public Works & Engineering Services.

2. Any proposed drainage system conduit in public rights-of-way or easement shall be Reinforced Concrete Pipe (RCP), Reinforced Concrete Box sections (RCB), High Density Polyethylene Pipe (HDPE), or Polypropylene Pipe (PP) (Polypropylene Pipe shall be manufactured by ADS or approved equal). HDPE & PP storm drain conduit is permitted for conduit sizes 36" and smaller; HDPE & PP drainage conduits larger than 36" may be permitted but require site-specific approval by the Director of Public Works & Engineering Services. PVC pipe is only permitted for collection of roof drains; however, PVC may be allowed in other unique situations if approved by the Director of Public Works & Engineering Services.

3. Storm drains will typically be located in the center of the roadway. Storm drains should be straight between junction boxes where possible. Where curves are necessary to conform to street layout, the radius of curvature should not be less than sixty-five (65) feet. The minimum radius of curvature should not be less than the pipe manufacturer's recommendation. Head losses shall be calculated for bends and curves as shown on Figure 11 in Appendix C.

4. The junction of in-line pipes of different diameters shall be made such that the crowns (inside tops or soffits) are at the same elevation. When lateral pipes connect to trunk mains, they shall be connected with the center of the lateral matching the center of the trunk main.

TABLE 3			
MINIMUM GRADES FOR STORM DRAINS			
Pipe Size (inches)	Concrete Pipe Slope (ft/ft) (n=0.013)		
18	0.00177		
21	0.00144		
24	0.00121		
27	0.00103		
30	0.00090		
33	0.00079		
36	0.00070		
39	0.00063		
42	0.00057		
45	0.00053		
48	0.00048		
54	0.00041		
60	0.00036		
66	0.00031		
72	0.00028		
78	0.00025		

5. Storm drain junction boxes are needed for access to underground storm drains for inspection and cleanout. Junction boxes should be located at junctions of large storm drain main lines at all lateral connections, and at abrupt changes in alignment or grade. For pipes larger than 24-inches, junction boxes or other access points shall be located at intervals not to exceed eight hundred (800) feet. They shall be located at intervals not to exceed four hundred (400) feet for pipes 24-inches in diameter or smaller. Junction boxes shall be constructed in accordance with the Town's standard details.

6. Where a storm drain system discharges into a pond or lake, the outside top of the pipe shall be set below the normal pool of the lake. The impact on tailwater from fluctuations in the pond or lake level should be considered in designing the pipe system. Where storm drains discharge into channels or streams, adequate measures shall be taken to control erosion using concrete headwalls, rock riprap, gabions, and/or other means as necessary.

7. A storm drain manhole shall be required at every lateral connection to a main, and at every change in pipe size.

8. A storm drain manhole is required for every commercial site connection to a storm drain main.

9. The invert of the junction box should be rounded to match the inverts of the pipes entering the junction box in order to reduce eddying and resultant head losses. The junction box floor shall be provided with a minimum of 0.1' fall from upstream to downstream pipe flowlines. The invert should be rounded to a minimum depth equal to the design flow depth. At junctions with other storm drain main lines, the maximum interior angle of intersection of pipes in the junction box shall be ninety degrees (90°). A headwall shall be constructed at the outfall of any storm drainage system. If the outlet velocity exceeds the maximum permissible velocity for the channel (see Table 4), an apron of erosion protection or energy dissipation is required. Erosion protection shall consist of concrete, gabion mattress or grouted rock riprap between the storm drain headwall and the channel. All gabion and grouted rock shall be constructed with a layer of filter fabric under the rock. The calculation for the length and width of the erosion protection outfall apron shall be per the "Gregory Method" as outlined in Section 3.12. In unique situations, other methods for calculating erosion protection may be presented to the Director of Public Works & Engineering Services for approval. Permanent erosion protection dimension calculations shall be provided on the storm drain plans

VI. DESIGN OF OPEN CHANNELS

A. Hydraulic Design of Open Channels

1. Open channels shall be designed to carry the 100-year frequency storm event with a minimum of one (1) foot of freeboard (the height of the improved channel above the calculated water surface) to the top of bank. Additional freeboard shall be provided to accommodate superelevation or other factors causing a rise in the water surface. For waterways included in the Flood Insurance Study (FIS), flood elevations shall be determined by the same methodology as used in the FIS, unless other methods are approved by the Director of Public Works & Engineering Services.

2. All channels shall be designed to operate in sub-critical conditions except at hydraulic jumps, such as at culverts, bridges and drop structures, and shall be designed for stable flow (Froude number less than 0.90). In instances of super-critical flow, or locations where flow passes through critical depth, channels shall be lined to prevent scour and erosion.

3. Maximum allowable channel velocities shall be as shown in Table 4; however, good engineering judgment may indicate that lower velocities are necessary in specific situations. The values provided in Table 4 shall be used as a guide; actual conditions may require deviation from these values and shall be approved by the Director of Public Works & Engineering Services. Drop structures, if needed to provide grade control and maintain sub-critical flow, shall be constructed of reinforced concrete lining or gabion structures.

4. The composite roughness coefficient should account for the sediment, debris, and vegetation that can reasonably be expected in the channel environment. The roughness coefficients given in this Manual are minimum and should be increased at the discretion of the design engineer to account for expected conditions. If the possibility exists that high bed loads or debris can accumulate in the channel, the 'n' factor should be adjusted or other measures taken to ensure that flow shifts from super-critical to sub-critical will not cause flooding.

TABLE 4				
ROUGHNESS COEFFICIENTS AND MAXIMUM VELOCITIES				
FOR OPEN CHANNELS				
	Roughness Coefficient			
				<u>Max.</u>
Channel Description	<u>Mınımum</u>	<u>Normal</u>	<u>Maxımum</u>	<u>Velocity</u>
MINOD NATUDAL CIDEAMS				<u>(TPS)</u>
MINOR NATURAL STREAMS				
Moderately Weil-Defined Channel	0.025	0.020	0.022	0
Banas Woods, Little Bruch	0.025	0.030	0.033	<u> </u>
Woode Light Bruch on Banka	0.030	0.035	0.040	<u> </u>
Weeds, Light Brush on Banks	0.030	0.035	0.040	ð
Weeds, Heavy Brush on Banks	0.035	0.050	0.060	8
Weeds, Dense Willows on Banks	0.040	0.060	0.060	8
Crease and Weads Little Druch		0.020	0.042	0
Grass and Weeds, Little Drush	0.030	0.030	0.042	0
Dense weeds, Little Brush	0.036	0.042	0.048	<u>ð</u>
Weeds, Light Brush on Banks	0.036	0.042	0.042	8
Weeds, Heavy Brush on Banks	0.042	0.060	0.072	8
Weeds, Dense Willows on Banks	0.048	0.072	0.085	8
Flood Plain, Pasture	0.025	0.020	0.025	0
	0.025	0.030	0.035	8
I all Grass, No Brush	0.030	0.035	0.050	8
Flood Plain, Cultivated	0.025	0.020	0.025	0
No Crops	0.025	0.030	0.035	8
Mature Crops	0.030	0.040	0.050	8
Flood Plain, Uncleared	0.025	0.050	0.070	0
Heavy Weeds, Light brush	0.035	0.050	0.070	8
Medium to Dense Brush	0.070	0.100	0.160	8
I rees w/ Flood Stage below	0.080	0.100	0.120	8
		efficient i		hat fau
MAJUR NATURAL STREAMS - The h	ougnness co auco hanko i	efficient is	5 IESS THAN TI offoctivo roci	Tat Tor
Mederately Well Defined Channel				<i>stance.</i> o
	0.025		0.000	0 0
	0.055		0.100	0
Mowed Crass Clay Soil	0.020	0.025	0.040	0
Mowed Grass, Cidy Soli	0.030	0.035	0.040	<u> </u>
		0.035	0.040	σ
Close Cravel Section	L J	0.025	0.020	0
		0.025	0.030	0
	0.025	0.030	0.035	10
Smooth Kock	0.025	0.030	0.035	15

LINED CHANNELS						
Smooth Finished Concrete	0.015	0.0175	0.020	15		
Rip-rap (Rubble), Dp=12"	0.030	0.040	0.050	10		
Rip-rap (Grouted), Dso=12"	0.030	0.035	0.040	10		
PAVEMENTS						
Concrete Pavement	0.015	0.0175	0.020	15		
Asphalt Pavement	0.016	0.018	0.022	15		

A. Open Channel Design Geometry

1. Concrete drainage channels will not be allowed within the Town of Addison unless written approval is received from the Director of Public Works & Engineering Services.

2. A 10-foot-wide access ramp into the channel shall be included for maintenance purposes.

3. The minimum radius of curvature shall be not less than three times the top width for improved channels in a sub-critical flow regime, unless detailed calculations indicate a smaller radius can be used without causing excessive velocities, shear stresses, or waves on the outside of the channel.

4. If the outlet velocity of an improved channel discharging into an existing channel exceeds the maximum permissible velocity for the existing channel, erosion protection is required. This protection shall consist of a section of rock riprap or other energy dissipation measures at the intersection of the two channels. The dimensions and material of the erosion protection shall be specified as required to protect the channel from erosion. Erosion protection measures that promote sustainability and water quality are allowed and encouraged.

VII. ROADSIDE DITCHES

A. Roadside ditches shall only be allowed when previously approved by the Director of Public Works & Engineering Services. Where permitted, roadside ditches shall be designed to convey runoff from a 100-year storm below the edge of pavement and contained within the rights-of-way.

B. All roadside ditches shall be protected with sod, back sloping, and/or other bank protection designed and constructed to control erosion. Any earthen slopes shall have proper vegetative cover and shall be no steeper than three horizontal to one vertical (3:1).

VIII. CULVERTS

- A. Hydraulic Design of Culverts
 - 1. A culvert is used to convey storm water runoff through roadway

embankments. Culverts shall be designed to convey the 100-year frequency storm. A minimum of one (1) foot of freeboard (depth of water that can be ponded at the upstream end of the culvert) is required between the 100-year headwater and either the top of curb or edge of pavement, whichever is applicable. The headwater shall be based on the design storm and shall not increase the flood hazard of adjacent property.

2. The minimum velocity in the culvert barrel shall be 2.5 feet per second in a 5year storm. Maximum allowable velocity in the culvert is 15 feet per second in a 100-year storm. However, downstream conditions will generally impose more stringent limits.

3. Depending on the type of hydraulic operation, a culvert may function either under inlet control or outlet control.

a) Inlet control exists when the barrel capacity exceeds the culvert inlet capacity and the tailwater is not high enough to control culvert operation. Headwater depth and entrance conditions control the culvert capacity.

b) Outlet control exists when the culvert inlet capacity exceeds the barrel capacity, or the tailwater elevation is high enough to create a backwater condition through the culvert. The tailwater elevation and the slope, length and roughness of the culvert determine the culvert capacity.

c) Both types of operation shall be considered, and the culvert capacity will be based on the type of operation that yields the higher headwater of the two. Inlet control shall not be assumed without the prior approval of the Director of Public Works & Engineering Services.

4. Nomographs and hydraulic calculation tables for the solution of various inlet and outlet control scenarios for pipe culverts are included as Figures 13 through 15 located in Appendix C, although a backwater analysis is encouraged. The Director of Public Works & Engineering Services may require submittal of documentation on any such program used to analyze culverts. If the culvert is being analyzed as part of a stream or waterway, which is being modeled using a water surface profile program such as HEC-2 or NEC-RAS, then the water surface profile model may be used to analyze the culvert.

5. The tailwater shall be determined for the design discharge, based on the hydraulic conditions of the downstream channel. Open channel flow methods should be used for this analysis.

B. Culvert Design Geometry

1. The minimum culvert diameter shall be eighteen (18) inches.

2. Culverts in public rights-of-way or easement shall be reinforced concrete pipe (RCP) or reinforced concrete box sections. High density polyethylene pipe (HDPE) is permitted for pipes 36" and smaller; HDPE conduits larger than 36" require approval of the Director of Public Works & Engineering Services.

3. The culvert length shall be chosen to provide minimum 3:1 embankment slopes. The culvert flowline shall be aligned with the channel bottom and the skew angle of the stream.

4. The culvert skew shall not exceed forty-five degrees (45°) as measured from a line perpendicular to the roadway centerline without the approval of the Director of Public Works & Engineering Services.

5. A headwall or wingwalls and apron shall be constructed at both ends of all culverts. For small culverts (30" in diameter or less), a sloped end section or a sloped headwall may be specified. The headwall and wingwall design depends largely on hydraulic characteristics of the flow, the site conditions and potential for erosion and scour. The most current TxDOT details for headwalls and wingwalls are acceptable for use in construction of end treatments.

6. If the outlet velocity exceeds the maximum permissible velocity for the channel it may be mitigated with either channel improvements for erosion protection or energy dissipation. Erosion protection may consist of an apron of rock riprap between the storm drain headwall and the channel. The apron length, width, and median stone diameter shall be specified as required to protect the channel from erosion. Alternate erosion protection measures that promote sustainability and water quality are allowed and encouraged.

IX. BRIDGES

A. Bridges shall be designed to span the entire stream or channel without restricting flow. To the extent possible, bridges will span streams and channels at a ninety-degree (90°) angle.

B. Flow hydraulics through the bridge shall be modeled using HEC-2 or HEC-RAS. Bridges shall be designed so that the lowest point of the bridge, the low chord, will be a minimum of two (2) feet above the 100-year water surface elevation, assuming fully developed upstream conditions.

X. ENERGY DISSIPATION

A. Erosive forces at work in the natural drainage network are often increased by urban land development projects. When the drainage network is altered and runoff is captured and released in a more concentrated fashion the potential for erosion can increase. Excessive velocities and erosion potential shall be considered for all proposed storm drain outfalls, culverts, detention ponds, bridges, and open channels. Design of drainage systems and outfalls shall result in a calculated velocity below the maximum allowable velocity noted in Table 4. In addition, any location that has the potential for erosion per the Director of Public Works & Engineering Services but is below the maximum velocity identified in Table 4 shall require permanent erosion control and/or energy dissipation structures. permanent erosion protection dimension calculations shall be provided on the storm drain plans

B. Several resources are available for the design of energy dissipation structures. The iSWMM Technical Design Manual contains design guidelines for rock riprap protection using

the "Garry Gregory Method". Other techniques and design methods may be utilized, such as those documented in NCTCOG Design Manual, Engineering Manual 1110-2-1601 (USACE) and HEC-14, Hydraulic Design of Energy Dissipators for Culverts and Channels.

XI. DETENTION FACILITIES

A. Hydraulic Design of Detention Facilities

1. Proposed developments shall provide detention for the 100-year storm event or downstream drainage system improvements if the downstream drainage system does not have sufficient capacity to accommodate the 100 year storm event, or if an increase in runoff/discharge adversely affects adjacent or downstream properties (to the limit of 10% rule). A downstream assessment shall be performed for detention facilities to a point that meets the Ten Percent Rule, or to a recognized water course (See Section 2.1 and Figure 1, Appendix C) to verify the adequacy of the downstream system. Increased storm water runoff shall not adversely affect adjoining property. Permanent impoundments of water shall be constructed in such a way to present negative effects on aesthetics, function, flooding, health, and safety.

a) Detention storage facilities serving drainage areas smaller than one hundred acres (100 AC) may use the Modified Rational Method for storage calculations. If the Modified Rational Method is used, computations shall be provided for review and approval in the format provided in Appendix B, and summaries of methods and results shall be provided in the construction plans.

b) All storage facilities serving drainage areas greater than one hundred acres (100 AC), or where the Modified Rational Method is not applicable shall be analyzed using HEC-HMS or other approved software for reservoir routing of an inflow hydrograph. The software program or computational method shall be approved by the Director of Public Works & Engineering Services. The analysis should consist of comparing the design flows at a point or points downstream of the proposed storage site with and without storage.

2. Outfall Design

a) Design calculations shall show the effects of the detention facility in each of the 2-, 10, and 100-year storm events. This may require the use of multi-stage control structures. The detention facility shall be designed to provide the required detention for all of the above-listed frequencies.

b) The outlet control structures for detention storage facilities typically include a principal outlet and an emergency overflow. The principal outlet functions to restrict the outflow. Weir and/or orifice equation calculations shall be provided in the plans for each storm event The principal outlet shall be designed to accommodate the 2, 10, and 100-year frequency storms while maintaining a minimum freeboard of one (1) foot to the top of the pond embankment.

c) The outlet control structure may be drop inlets, pipes, culverts, weirs, or orifices. Checks should be made to determine if the outlet structure is controlled by weir or orifice flow. Weir and/or orifice equation calculations shall be provided in the plans for each storm event. The tailwater on the structure could significantly affect its capacity. The engineer should carefully evaluate potential tailwater effects of the downstream system, whether it be a ditch, pipe, road, or creek.

d) If a riser pipe outlet is used, it shall be protected by a trash rack and anti-vortex plate. If an orifice plate is used, it shall be protected with a trash rack with at least 10 square feet of open surface area. In both cases, the rack shall be hinged or easily removable to allow for cleaning. The rack shall be adequately secured to prevent it from being removed or opened when maintenance is not occurring.

B. Detention Facility Geometric Design

1. Underground detention facilities will be permitted, subject to the discretion and approval of the Director of Public Works & Engineering Services prior to submittal of plans.

2. All detention facilities shall have an emergency overflow spillway or structure designed to convey the 100- year, 24-hour design storm for post-development site conditions, assuming the pond is full to the overflow spillway or structure crest. The overflow shall be designed to convey these extreme event peak flows around the berm structure for discharge into the downstream conveyance system. The overflow shall be designed and sited to protect the structural integrity of the berm.

a) The subgrade of the spillway shall be set at or above the 100-year overflow elevation of the control structure. The spillway shall be located to direct overflows safely into the downstream conveyance system.

b) The emergency overflow spillway shall be armored with riprap or other flow-resistant material that will protect the embankment and minimize erosion. The overflow erosion protection shall be designed in accordance with the guidelines provided in Section 3.12, and shall extend to the toe of each face of the berm embankment. The emergency overflow spillway weir section shall be designed for the maximum design storm event for post-development conditions.

c) All TCEQ requirements for impoundment and dam safety shall apply. These requirements relate to both the size and the hazard classification of the embankment. Copies of all materials submitted to TCEQ for permitting, along with the TCEQ permits, shall be submitted to the Director of Public Works & Engineering Services.

C. Detention Facility Maintenance

 The potential for the impact of sedimentation on the detention facility should be evaluated. A means of access for maintenance of the facility shall be provided.
Detention facilities for proposed developments are to be maintained by the respective landowners within the development as detailed within the "Detention Area Easement" statement provided in the Appendix A. This detention statement shall be inserted on the Final Plat for any development project with detention facilities.

XII. STORM WATER QUALITY DESIGN STANDARDS

A. The Town of Addison has been issued a storm water discharge permit from the Texas Commission on Environmental Quality (TCEQ) and is required under the Clean Water Act to implement a storm water management program with an overall goal of improving water quality of receiving water bodies.

1. In compliance with the Town's TCEQ storm water permit and in an effort to improve the storm water quality of our local water resources, the Town of Addison has established the following criteria for land development projects and construction sites.

2. It is the responsibility of the Developer, Owner and Contractor to ensure they are in compliance with the most current state or federal storm water regulations including the Clean Water Act, EPA National Pollutant Discharge Elimination System, and TCEQ Texas Pollutant Discharge Elimination System.

B. Land Development Post-Construction Runoff Controls

1. Post-construction runoff controls shall be used to minimize increases in storm water runoff rates and volumes, soil and stream channel erosion, sediment transport and the discharge of pollutants to the Town's municipal separate storm drain system. The Town of Addison has adopted these standards for the purpose of protecting local water resources from degradation and to protect the general health, safety and welfare of the public residing in affected watersheds.

2. All new development and re-development projects, one acre or larger, or less than one acre if part of a larger common plan of development or sale, shall implement Best Management Practices (BMP's) to minimize water quality impacts from development after construction is complete (post-construction). Some, but not all, examples of various long-term post- construction BMPs are provided below.

- a) Floodplain and channel buffers
- b) Storm water treatment ponds and wetlands
- c) Grassed swales and channels
- d) Detention and retention facilities
- e) Energy dissipators and velocity control structures
- f) Infiltration trenches/Bioswales
- g) Rain gardens
- h) Green roofs
- i) Open spaces
- j) Native landscaping
- k) Porous parking surfaces
- I) Storm water re-use and rainwater harvesting
- m) Tree preservation and tree planting
- n) Storm water treatment systems

3. It is the responsibility of the design engineer to verify the adequacy of the post- construction BMP for mitigating the runoff effects from the proposed project. Guidelines for the selection and design of post-construction BMPs may be found in the North Central Texas Council of Government's (NCTCOG) integrated Storm Water Management (iSWM) Technical Manual, Site Development Controls. These BMPs are

acceptable for design of storm water controls within this section, however the design of detention facilities shall be as defined in the Drainage Criteria Manual

4. It is recommended that the owner, developer and/or design engineer consult with the Director of Public Works & Engineering Services prior to design of any post-construction BMPs to discuss and evaluate the intended BMP performance criteria (e.g. water quality, channel protection, runoff volume reduction, etc.) and related long term maintenance requirements. All post-construction BMP's shall be submitted to the Director of Public Works & Engineering Services for review and approval prior to construction of the proposed project.

5. All post-construction BMPs shall have an enforceable long term operation and maintenance agreement to ensure the system functions as designed. This agreement will include any and all maintenance easements as required to access and inspect the storm water practices, and to perform routine maintenance as necessary to ensure proper functioning of the storm water practice. Unless otherwise agreed upon by the Town of Addison, the long term operation and maintenance of any post-construction BMPs shall be the responsibility of the property owner.

6. At the sole discretion of the Director of Public Works & Engineering Services, the Town may provide an incentive to the developer in the form of a reduction in storm water fees for addressing the "first flush" of the storm event by the implementation of any of the above-mentioned BMPs, or by other approved BMPs submitted by the developer. (Reference current stormwater fee ordinance for further info)

C. Temporary Construction Site Storm Water Pollution Prevention

1. All construction activity, regardless of size, shall have storm water pollution prevention BMP's installed prior to any land disturbing activities to prevent the discharge of pollutants to the Town's municipal separate storm drain system. It is the responsibility of owners, developers, and contractors to maintain compliance with the (TCEQ) storm water construction permit TXR150000. All storm water BMP's shall be provided, constructed and maintained per the Town of Addison's Erosion Control Details, or in the absence of an applicable Town detail, the standards set forth in the NCTCOG iSWM Technical Manual, Construction Controls.

2. The developer or owner is responsible for providing the Director of Public Works & Engineering Services with a copy of the TCEQ Construction Site Notice for projects between 1 and 5 acres or the TCEQ Notice of Intent (NOI) for projects larger than 5 acres prior to any land disturbing activities. Reference the TCEQ general permit TXR150000 for further information. Figure 16 in Appendix C provides a TCEQ Construction Permit Flow Chart and may be used to help determine whether a construction site is regulated under the permitting program.

3. It is the intent of the Town of Addison that sediment from construction sites be contained on the site. Sediment ponds shall be provided for construction sites as required by the TCEQ TPDES Construction Permit. Accordingly, Storm Water Pollution Prevention Plans (SWPPP) shall address two stages:

a) Stage I refers to the initial grading and infrastructure construction phase of the development. Sediment ponds, boundary silt fence or other approved mass grading erosion and sediment controls shall be in installed before construction may commence. Inlet protection devices shall be installed until streets and alleys have been paved. Immediately after paving, an erosion control blanket (or other erosion control method as approved by the Director of Public Works & Engineering Services) shall be installed adjacent to paved surfaces such as alleys, streets, flumes, etc., in addition to the placement of silt fence along the downslope boundaries of the site After paving, but during continued construction, appropriate inlet protection devices shall continue to be implemented. No construction is permitted until Stage 1 erosion controls are installed and the Town has received a copy of the NOI or Construction Site Notice.

b) Stage 2 refers to the period of time after acceptance of the development by the Town and prior to completion of homes or other buildings. During this stage, an erosion control blanket (or other erosion control method as approved by the Director of Public Works & Engineering Services) shall be placed adjacent to all streets and alleys and at the project perimeter to contain sediment within the block and prevent transport to the pavement. The maintenance of this perimeter erosion control system becomes the builder's responsibility once a building permit is issued. The developer is then responsible for the perimeter erosion controls until the development or phase is 95% built out.

c) Stage 2 refers to the period of time after acceptance of the development by the Town and prior to completion of homes or other buildings. During this stage, an erosion control blanket (or other erosion control method as approved by the Director of Public Works & Engineering Services) shall be placed adjacent to all streets and alleys and at the project perimeter to contain sediment within the block and prevent transport to the pavement. The maintenance of this perimeter erosion control system becomes the builder's responsibility once a building permit is issued. The developer is then responsible for the perimeter erosion controls until the development or phase is 95% built out.

XIII. REGULATORY ISSUES

A. The Developer is responsible for obtaining approvals and maintaining compliance with any State or Federal regulations, permits, and programs including TCEQ, EPA, U.S. Army Corps of Engineers (USACE), FEMA or other agencies. The Developer is required to provide the Town with copies of all approved permits and associated submittals required by any State or Federal agency for developments within the Town of Addison.

B. U.S. Army Corps of Engineers 404 Permits

1. The U.S. Army Corps of Engineers (USACE) has been directed by Congress under Section 404 of the Clean Water Act (33 USC 1344) to regulate activities impacting all waters of the United States, including wetlands and other jurisdictional waters. The USACE has developed a permitting process to ensure compliance with

the Clean Water Act. Developers will be expected to ensure that all requirements of the Clean Water Act are met. The Town of Addison assumes no responsibility for the compliance of the Developer with this or any other Federal regulations.

2. However, the Developer should be aware that under current regulations, most of the streams within the Town of Addison are likely to be considered jurisdictional waters by the USACE. As a result, permitting will likely be required for any projects impacting these streams by fill, excavation, utility crossings or roadway crossings. In many cases, these permits carry significant compensatory mitigation requirements to offset losses of jurisdictional waters and their associated habitat.

C. National Flood Insurance Program

1. The Town of Addison is a participant in the National Flood Insurance Program administered by the Federal Emergency Management Agency (FEMA). Copies of the Flood Insurance Rate Maps (FIRM) are available from the Town, for a fee, depicting the 100-year floodplain developed for insurance rating purposes. Floodplain management in the Town of Addison is under the direction of the Director of Public Works & Engineering Services, who also functions as the Floodplain Administrator. Refer to the Town of Addison's Floodplain Ordinance (Code of Ordinances, Chapter 42 — Floods) for further information.

XIV. VARIANCE FROM STANDARDS

Any proposed variation from these standards must be submitted for review and approval by the Public Works & Engineering Services prior to submittal of civil construction plans.

APPENDIX A

STANDARD EASEMENT DEDICATION STATEMENT

The following "Detention Area Easement" statement shall be placed on the Final Plat for all detention structures. Consult with the Town of Addison concerning easement statements that may be required for a Final Plat for long term operation and maintenance of other storm drainage structures or storm water quality structures.

DETENTION AREA EASEMENT STATEMENT

This plat is approved by the Town of Addison and accepted by the owner(s), subject to the following conditions which shall be binding upon the owner(s), his heirs, grantees and successors, and assigns:

The proposed detention area easement(s) within the limits of this addition, will remain as detention area(s) to the line and grade shown on the plans at all times and will be maintained by the individual owner(s) of the lot or lots that are traversed by or adjacent to the detention area(s). The Town of Addison will not be responsible for the maintenance and operation of said detention area(s) or any damage or injury to private property or person that results from the flow of water along, into or out of said detention area(s), or for the control of erosion.

No obstruction to the natural flow of storm water run-off shall be permitted by filling or construction of any type of dam, building, bridge, fence, walkway or any other structure within the designated detention area(s) unless approved by the Director of Public Works & Engineering Services; however, it is understood that in the event it becomes necessary for the Town of Addison to erect any type of drainage structure in order to improve the storm drainage that may be occasioned by the streets and alleys in or adjacent to the subdivisions, then, in such event, the Town of Addison shall have the right to enter upon the detention area(s) at any point, or points, to erect, construct and maintain any drainage facility deemed necessary for drainage purposes. Each property owner shall keep the detention area(s) traversing or adjacent to his property clean and free of debris, silt and any substance which would result in unsanitary conditions or blockage of the drainage. The Town of Addison shall have the right of ingress and egress for the purpose of inspection and supervision of maintenance work by the property owner(s), or to alleviate any undesirable conditions, which may occur.

The detention area(s), as in the case of all detention areas, are subject to storm water overflow(s) to an extent which cannot be clearly defined. The Town of Addison shall not be held liable for any damages of any nature resulting from the occurrences of these natural phenomena, nor resulting from the failure of any structure or structures, within the detention area(s) or subdivision storm drainage system.

The detention area easement line identified on this plat shows the detention area(s) serving this addition.

APPENDIX B

MODIFIED RATIONAL METHOD DETENTION BASIN DESIGN EXAMPLE

GIVEN: A 25-acre site, currently open space, is to be developed for retail use. The entire site is the drainage area of the proposed detention basin.

DETERMINE: The maximum release rate and required detention storage, detention basin size and shape, and outlet structure configuration for the 2-, 10-, and 100-year events (sample calculations for the 100-year storm are provided below)

SOLUTION:

Step 1. Determine peak runoff rate prior to site development. This is the maximum release rate from the site after development.

Step 2: Determine inflow for storms of various durations in order to determine maximum volume required with release rate determined in Step 1

NOTE: Incrementally increase durations to determine maximum required Volume. The duration with a peak inflow less than maximum release rate, or where required storage is less than storage for the prior duration, is the last increment.

Present Conditions	Q = C * I * A
--------------------	---------------

С	=	0.3
Tc	=	20 min.
i ₁₀₀	=	7.05 in./hr.
Q_{100}	=	0.90 X 7.78 X 25 = 179.8 cfs

Check various duration storms: Qp = C *i * A

15 min.	i = 7.99	Qp	=	0.90 X 7.99 X 25 = 179.8 cfs
20 min.	i = 7.05	Qp	=	0.90 X 7.05 X 25 = 158.6 cfs
30 min.	i = 5.77	Qp	=	0.90 X 5.77 X 25 = 129.8 cfs
40 min.	i = 4.92	Qp	=	0.90 X 4.92 X 25 = 110.7 cfs
50 min.	i = 4.32	Qp	=	0.90 X 4.32 X 25 = 97.2 cfs
60 min.	i = 3.86	Qp	=	0.90 X 3.86 X 25 = 85.9 cfs
70 min.	i = 3.50	Qp	=	0.90 X 3.50 X 25 = 78.8 cfs
80 min.	i = 3.21	Qp	=	0.90 X 3.21 X 25 = 72.2 cfs
90 min.	i = 2.97	Qp	=	0.90 X 2.97 X 25 = 66.8 cfs

Maximum Storage Volume is determined by deducting the Volume of runoff released during the time of inflow from the total inflow volume.

Inflow = Storm duration x respective peak discharge x 60 sec./min. Outflow = Half of inflow time (Td+ Tc) x control release discharge x 60 sec./min.

15 min. Storm Outflow Storage	inflow 15 X 179.8 X 60 sec./min 0.5 X 30 X 52.9 X 60 sec.min 125,646 cf	= =	161.820 cf 53,958 cfs
20 min. Storm Outflow Storage	inflow 20 X 158.6 X 60 sec./min 0.5 X 35 X 52.9 X 60 sec.min 134,775 cf	= =	190,320 cf 55,545 cf
30 min. Storm Outflow Storage	inflow 30 X 129.8 X 60 sec./min 0.5 X 45 X 52.9 X 60 sec.min 162,225 cf	= =	233,640 cf 71,415 cf
40 min. Storm Outflow Storage	inflow 40 X 110.7 X 60 sec./min 0.5 X 55 X 52.9 X 60 sec.min 178,395 cf	= =	265,680 cf 87,285 cf
50 min. Storm Outflow Storage	inflow 50 X 97.2 X 60 sec./min 0.5 X 65 X 52.9 X 60 sec.min 188,445 cf	= =	291,600 cf 103,155 cf
60 min. Storm Outflow Storage	inflow 60 X 85.9 X 60 sec./min 0.5 X 75 X 52.9 X 60 sec.min 190,215 cf	=	309,240 cf 119,025 cf
70 min. Storm Outflow Storage	inflow 70 X 78.8 X 60 sec./min 0.5 X 85 X 52.9 X 60 sec.min 196,085 cf	= =	330,960 cf 134,889 cf
80 min. Storm Outflow Storage	inflow 80 X 72.2 X 60 sec./min 0.5 X 95 X 52.9 X 60 sec.min 195,795 cf	= =	346,560 cf 150,765 cf
90 min. Storm Outflow Storage	inflow 90 X 66.8 X 60 sec./min 0.5 X 105 X 52.9 X 60 sec.min 194,085 cf	=	360,720cf 166,635 cf

Maximum volume required is 196,085 cf and the critical storm duration is 70 minutes for the 100-year storm.

Step 3. Size the basin to contain the required volume for the 100-year storm while maintaining minimum slope and freeboard requirements.

Step 4. Using the selected geometry of the basin as determined above and the storage volumes required for each storm event, determine the maximum depth in the basin for each storm. To design the outlet structure for the required multiple frequencies, the calculations shown abo/e may be repeated for each frequency in tabular form as shown below. For each storm event, the highest storage value calculated, along with the selected basin size and shape, determines the maximum depth for each event. This depth is the head used in outlet structure design.

Step 5. A trial outlet structure is selected, and may be a weir, an orifice (pipe), a V-notch weir, or a combination of outlets.

The outlet structure is designed using the head calculated above, to provide a peak discharge that is no greater than 2% above existing (undeveloped) peak runoff for each of the 5-, 10-, 25-, and 100-year storm events.

Several iterations may be necessary to balance discharge from the outlet structure, pond geometry and head. If the discharge is significantly different (either higher or lower) than the discharge assumed in Step 2, the actual operation of the pond will not correspond to the calculations. Discharge for any given event may not exceed the allowable discharge determined in Step 1 by more than 2% nor may actual discharge be more than 10% below the allowable discharge.

APPENDIX C

FIGURES

- Figure 1 Major Drainage Basins
- Figure 2 Rainfall Intensity-Duration-Frequency Curves
- Figure 3 Overland Time of Flow
- Figure 4 Shallow Concentrated Flow Velocity
- Figure 5 Capacity of Triangular Gutters
- Figure 6 Full Gutter Capacity for Parabolic Crowns
- Figure 7 Capacity of Alley Sections
- Figure 8 Capacity of Curb Inlets on Grade
- Figure 9 Capacity of Drop Inlets and Curb Inlets in Sumps
- Figure 10 Manning's Formula for Flow in Storm drains
- Figure 11 Minor Head Losses (2 pages)
- Figure 12 Hydraulic Computation Tables
- Figure 13 Headwater Depth for Pipe Culverts with Inlet Control
- Figure 14 Headwater Depth for Pipe Culverts Flowing Full with Outlet Control
- Figure 15 Culvert Design Table
- Figure 16 TCEQ Construction Permit Flow Chart

FIGURE 1 – MAJOR DRAINAGE BASINS

FIGURE 2 – RAINFALL INTENSITY – DURATION – FREQUENCY CYCLES

FIGURE 3 – OVERLAND TIME OF FLOW

FIGURE 4 – SHALLOW CONCENTRATED FLOW VELOCITY

FIGURE 5 – CAPACITY OF TRIANGULAR GUTTERS

FIGURE 6 – FULL GUTTER FLOW CAPACITY OF PARABOLIC CROWNS

FIGURE 7 – CAPACITY OF ALLEY SECTIONS

FIGURE 8 – CAPACITY OF CURB INLETS ON CRADE

FIGURE 9 – CAPACITY OF DROP INLETS AND CURB INLETS IN SUMPS

FIGURE 10 – MANNING'S FORMULA FOR FLOW IN STORM SEWERS

FIGURE 11 – MINOR HEAD LOSSES 1 OF 2

FIGURE 11 – MINOR HEAD LOSSES 2 OF 2

		EMARKS
		2 2 5 5
		Hydrau Grade L Upstread
		Hydraufic Grade Line Elevation Retend
		Time at Station Station (minutes)
		In Sever 1 in Sever 1 (Intrules)
		Velocity Velocity (feet)
		DRAI Netection Collection Prents
	NLET CAPACITY (CFS)	Pex (t.)
	INLET (FT)	R SI worth of Plan (increas)
	NLET APPACITY (CFS/FT)	Pepes
	PRESSON	ATION Slope of Gradiest (r.f.)
COM	MUCH DE LA CALLER	Stem Visiter O. C.
NOL	STREET SLOPE (%)	
UTAT	ATIO	ULLIC The at Uppercommendation
OMF or market or market or market or market or market or market or market or market or market or market or market or or or or or or or or or or		Accum dated Tor
hee C	RAIN MIENSITY (IWHR)	F 100
		ENTAL MAGE Control Control
he he he	C SOF	NCREN DRAIN ARA Anas Aras
DRA	COEF.	S. A.
ý	DEVIC	Distance Between Points Points
ACRES	NET LOCATON	OFF Manneel STATION
AREA	DESGN POART NUMBER	COLLEC ONLIC STATION

FIGURE 12 – HYDRAULIC COMPUTATIONS TABLES

FIGURE 13 – HEADWATER DEPTH FOR PIPE CULVERTS WITH INLET CONTROL

FIGURE 14 – HEADWATER DEPTH FOR PIPE CULVERTS FLOWING FULL WITH OUTLET CONTROL

FIGURE 15 – CULVERT DESIGN CALCULATION TABLE

FIGURE 16 – TCEQ CONSTRUCTION PERMIT FLOW CHART